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TopicsTopics
I. Measurement of informationeasu e e o o a o
II. Image registration using information theory
III Imaging feature selection using informationIII. Imaging feature selection using information 

theory
IV. Image classification based on informationIV. Image classification based on information 

theoretic measures



Measurement & InformationMeasurement & Information

ObjectiveObjective

L h t tif i f tiLearn how to quantify information



Information and UncertaintyInformation and Uncertainty
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More On UncertaintyMore On Uncertainty
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Example: Entropy Of mRNAExample: Entropy Of mRNA
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Concept Of EntropyConcept Of Entropy

•Shannon Entropy formulated by Claude Shannon•Shannon Entropy formulated by Claude Shannon

•American mathematician
•Founded information theory with one landmark paper in 1948
•Worked with Alan Turin on cryptography during WWII

•History of Entropy
•1854 – Rudolf Clausius German physicist developed theory of heat

Claude Shannon 
1916-2001

1854 Rudolf Clausius, German physicist, developed theory of heat
•1876 – Williard Gibbs, American physicist,  used it for theory of energy
•1877 – Ludwig Boltzmann, Austrian physicist, formulated theory of thermodynamics
•1879 – Gibbs re-formulated entropy in terms of statistical mechanics
1948 Sh•1948 - Shannon



Three Interpretations of EntropyThree Interpretations of Entropy
• The uncertainty in the outcome of an event

– Systems with one common event have less entropy than 
systems with various comment events.

• The amount of information an event provides• The amount of information an event provides
– An infrequently occurring event provides more information. 

i.e. has higher entropy,  than a frequently occurring event

• The dispersion in the probability distribution
– An uniform image has a less disperse histogram and thus 

l t th h t ilower entropy than a heterogeneous image.



Generalized EntropyGeneralized Entropy
• The following generating function can be 

used as an abstract definition of entropy:used as an abstract definition of entropy:

⎟
⎞

⎜
⎛ ∑M pv )(ϕ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅

⋅
=

∑
∑

=

=
M

i ii

i ii

pv

pv
hPH

1 2

1 1

)(

)(
)(

ϕ

ϕ

• Various definitions of these parameters 
provide different definitions of entropyprovide different definitions of entropy.
– Found over 20 definitions of entropy



Various Formulations Of EntropyVarious Formulations Of Entropy
Names
ShannonShannon
Renyi
Aczel
AczelAczel
Aczel
Varma
Varma
Kapur
Hadra
Arimoto
Sharma
Sharma



Various Formulations Of Entropy IIVarious Formulations Of Entropy II
Names
TanejaTaneja
Sharma
Sharma
Ferreri

Sant'Anna

Sant'Anna
Picard
Picard
Pi dPicard
Picard
Picard



Entropy In Medical Imagingpy g g
Entropy Map HistogramAveraging

H=6.0N=1

H=4.0N=40 H 4.0N=40

Histograms
image brain only

H=3.9
H 10 1image brain only 

Co-variance map H=10.1



Entropy Of Noisy ImagesEntropy Of Noisy Images
Entropy MapSignal-to-Noise 
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Image Registration Using 
Information Theory

ObjectiveObjective

L h t I f ti Th fLearn how to use Information Theory for 
imaging registration and similar 

dprocedures



Image RegistrationImage Registration
• Define a transform T that maps one image ontoDefine a transform T that maps one image onto 

another image such that some measure of 
overlap is maximized (Colin’s lecture).
– Discuss information theory as means for generating 

measures to be maximized over sets of transforms

M
R

I

CT MRI CT



Entropy In Image RegistrationEntropy In Image Registration
• Define estimate of joint probability 

distribution of images: A Bg

– 2-D histogram where each axis 
designates the number of possible 
intensity values in corresponding imageintensity values in corresponding image

– each histogram cell is incremented each 
time a pair  (I 1(x,y), I 2(x,y)) occurs in p ( _ ( ,y), _ ( ,y))
the pair of images (“co-occurrence”)

– if images are perfectly aligned then the 
histogram is highly focused; as the Joint 2D histogramhistogram is highly focused; as the 
images become mis-aligned  the 
dispersion grows

Of images A and B
B

– recall one interpretation of entropy is as a 
measure of histogram dispersion A



Use Of Entropy for Image Registrationpy g g

• Joint entropy (entropy of 2-D histogram):py ( py g )

∑ 2
,

( , ) ( , ) log [ ( , )]
i i

i i i i
x X y Y

H X Y p x y p x y
∈ ∈

= − ⋅∑

• H(X,Y)=H(X)+H(Y) only if X and Y are completely 
independent.

• Image registration can be guided by minimizing joint 
entropy H(X,Y), i.e. dispersion in the joint histogram for 
images is minimizedimages is minimized



ExampleExample

Joint Entropy of 2-D Histogram for rotation of image with respect
to itself of 0, 2, 5, and 10 degrees 









Alternative: Conditional EntropyAlternative: Conditional Entropy
• Assume we know X then we seek the remaining 

entropy of Yentropy of Y
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Use Of Mutual Information for Image 
R i t tiRegistration

• Recall definition(s):• Recall definition(s):
I(X,Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)

• amount by which uncertainty of X is reduced if Y is known.

I(X Y) H(X) + H(Y) H(X Y)I(X,Y) = H(X) + H(Y) - H(X,Y)
• maximizing I(X,Y) is equivalent to minimizing joint entropy H(X,Y)

• Advantage in using mutual information (MI) over joint g g ( ) j
entropy is that MI includes the entropy of each distribution 
separately.

• MI works better than simply joint entropy in regions with• MI works better than simply joint entropy in regions with 
low contrast where there will be high joint entropy but this 
is offset by high individual entropies as well - so the overall 
mutual information will be low

• Mutual information is maximized for registered images  



Formulation Of Mutual Information 
In Terms Of Entropy
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• Measures the dependence of the two distributions
• Is related to relative entropy (will be discussed next)
• In image registration I(X,Y) is maximized when the 

images are aligned
• In feature selection choose the features that minimize 

I(X,Y) to ensure they are not related.



Properties of Mutual Informationp
• MI is symmetric: I(X,Y) = I(Y,X)
• I(X,X) = H(X)
• I(X,Y) <= H(X)

– Information each image contains about the other 
image cannot be greater than the total information 
in each imagein each image.

• I(X,Y) >= 0
– Cannot increase uncertainty in X by knowing YCannot increase uncertainty in X by knowing Y

• I(X,Y) = 0 only if X and Y are independent



Processing Flow for Image 
R i t ti U i M IRegistration Using M.I.

Pre-processingInput 
Images

M.I.
Probability

D it M.I. 
Estimation

Density
Estimation

Image 
Transformation

Optimization
Scheme

Output 
ImageTransformation Scheme Image



Measurement Of Similarity Between 
Di t ib tiDistributions

• Question: How close (in bits) is a distribution X to  a model 
distribution Ω?
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Kullback-Leibler Divergence

• DKL = 0 only if X and Ω are identical; otherwise DKL > 0
• DKL(X||Ω) is NOT equal to DKL(Ω||X)  

• Symmetrical Form
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Uses Of The Symmetrical KLUses Of The Symmetrical KL
How much more noisy is image A compared to image B?

Map Histograms sKL distance B from A
A

sK
L

B

Increasing noise level

B

Increasing noise level



Uses Of The Symmetrical KLUses Of The Symmetrical KL
Detect outliers in a image series

#1                 #2         ………   #5                   #6   …………  #13

T t i il it b t #1

L

Test similarity between #1 as 
reference and rest based on 
Brain mask of #1

sK
L

Series Number



Image Feature Selection 
Using Information Theory 

Obj tiObjective

Learn how to use information theory for 
defining imaging featuresg g g



Mutual Information based Feature 
Selection Method

We test the ability to separate two classes• We test the ability to separate two classes 
(features).

f• Let X be the feature vector, e.g.  co-
occurances of intensities

• Y is the classification, e.g. particular 
i i iintensities

• How to maximize the separability of the 
classification?



Mutual Information based Feature 
Selection Method

• M.I. tests a feature’s ability to separate two y p
classes.
– Based on definition 3) for M.I.
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– Here X is the feature vector and Y is the 
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classification
• Note that X is continuous while Y is discrete

– By maximizing the M.I. We maximize the y g
separability of the feature

• Note this method only tests each feature individually



Joint Mutual Information based 
Feature Selection Method

• Joint M I tests a feature’s independence from all• Joint M.I. tests a feature s independence from all 
other features:

1 2 1 2 1( , ,..., ; ) ( ; | , ,..., )N k k kI X X X Y I X Y X X X= ∑

• Two implementations proposed:

1 2 1 2 1
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∑

• Two implementations proposed:
– 1) Compute all individual M.I.s and sort from high to low
– 2) Test the joint M.I of current feature while keeping all 

thothers
• Keep the features with the lowest JMI (implies independence)
• Implement by selecting features that maximize:

( , ) ( , )j k j
k

I X Y I X Xβ− ⋅∑



Mutual Information Feature Selection 
Implementation Issue

M I tests are er sensiti e to the n mber of• M.I tests are very sensitive to the number of 
bins used for the histograms

• Two methods used:• Two methods used:
– Fixed Bin Number (100)
– Variable bin number based on Gaussianity of dataVariable bin number based on Gaussianity of data
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– where N is the number of points and k is the 
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Image Classification Based On 
I f i Th i MInformation Theoretic Measures

Objective

Learn how to use information theory for 
imaging classificationimaging classification

Learn how to quantify image complexity



Complexity In Medical ImagingComplexity In Medical Imaging
Complexity
•Many strongly interacting components introduce an•Many strongly interacting components introduce an 
inherent element of uncertainty into observation of a 
complex system
I i i l l l ti i t d•In imaging, local correlations may introduce 

uncertainty in predicting intensity patterns
•Complexity describes the inherent difficulty in p y y
reducing uncertainty in predicting patterns

•Need a metric to quantify information i e reduce•Need a metric to quantify information, i.e. reduce 
uncertainty, in the distribution of observed patterns



Proposed Measures Of ComplexityProposed Measures Of Complexity

H: Metric Entropy

By Karl YoungSC: statistical  complexity



Proposed Complexity Measures 
IIII

M i E (H) b d if i f• Metric Entropy (H) – measures number and uniformity of 
distributions over observed patterns (joint entropy). For example, a 
higher H represents  increasing spatial correlations in image regions

• Statistical Complexity (SC) – quantifies the information, i.e. 
uncertainty , contained in the distribution of observed patterns. For 
example, a higher SC represents an increase in locally correlated 
patterns. p

• Excess Entropy (EE) – measures convergence rate of metric 
entropy. A higher EE represents increase long range correlations 
across regionsacross regions



Application: Capturing Patterns 
Of C i l Thi iOf Cortical Thinning

Brain MRI Histological Cut
Cortical ribbonCortical ribbon



Complexity Based Detection Of Cortical 
Thinning (Simulations)Thinning (Simulations)

H, SC, and EE automatically identify cortical thinning and do a good job at separating the groups 
for which the cortex was thinned from the group for which there was no thinning



Patterns Of Cortical Thinning In 
Dementia Using VoxelbasedDementia Using Voxelbased

Morphometry

Alzheimer’s  Disease          Frontotemporal Dementia



Detection Of Cortical Thinning Pattern  In 
Dementias Using Complexity MeasuresDementias Using Complexity Measures 

Control

ADAD

RGB representation: H; EE; SC;, 
More saturated red means more spatial correlations;

FTD

More saturated red means more spatial correlations;
More saturated green means more long range spatial correlations;
More saturation of blue means more locally correlated patterns;
Simultaneous increase/decrease of H,EE,SC results in brighter/darker levels of gray



Complexity Based ClassificationComplexity Based Classification
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SummarySummary
Metric Description
Entropy Decrease in uncertainty of a randomEntropy Decrease in uncertainty of a random 

observation
Joint entropy Simultaneous decrease in uncertainty of

multiple random observations
Conditional entropy Remaining uncertainty of one random 

observation given the probability of 
observations from another distribution

Mutual Information Mutual dependence of random
distributions

Kullback-Leibler divergence Similarity between random distributions
Statistical complexity Uncertainty in the distribution of 

correlated patterns
Excess entropy Convergence of joint entropy
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